Skip to main content

Bioclipse : Safe When Used As Directed

Finally used bioclipse for a real purpose, and to good effect, too:

what this shows (the images do get larger if you click on them! :) is the following basic workflow:

1) Exploring manager functions in the js console (bottom).
2) Writing a script in the js editor (top left).
3) Running and getting feedback in the rhino console (far right).
4) Viewing the results in the sdf viewer (top right).

What I was doing was searching through an sdf file (C10H16_filtered.sdf) for all structures with a cyclohexane ring as a substructure, then writing those out to a file.

Probably could have been done 5 other ways, but, well, it was more fun this way.

Oh, and it is a gist here.

Comments

The only thing that worries me here, is that the statelessness of managers do not easily allow making a fully efficient iterative process... it seems CDK classes would need to be used directly for that.
gilleain said…
This is true. It would have been nicer to have a call like:

cdk.writeToSDF(mol, sdfFileHandle)

in the loop. Even better would be a manager method that takes user-defined filter functions like:

cdk.filterSDF(my_func, inputPath, outputPath)

but that's very much a pipe-dream :)

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin...

chalky

I wanted to show something that hints at the things that the new architecture can afford us: This is using a Java2D graphics Paint object to make it look like chalk...kindof. It's a very simplistic way of doing it by making a small image with a random number of white, gray, lightgray, and black pixels. edit: it doesn't look so good at small scales some tweaking of stroke widths and so on is essential.

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the ...