Skip to main content

Automorphism groups and fragment graphs

Structure generation involves not just graph theory, but group theory. Or, I should say, it does in some of the papers I have read. For example, in this paper by J.L.Faulon, there is the sentence:
"The two main steps are to compute the orbits of the automorphism group of G and to saturate all the atoms of a chosen orbit
which may well be incomprehensible to many readers, except if the reader is a mathematician.

I am no mathematician, but thanks to some books on groups, I now understand both what an automorphism group is and what an orbit is. On the other hand, I also believe that this definition of how the algorithm works is overly complex. A more simple term might just be "fragment sets" - as it is fairly clear, if not mathematically exact. So, for the fragment graph [CH3, CH3, CH2, CH2, CH, CH] the fragment set is [CH3, CH2, CH].

Anyway, here is a short analysis of the automorphism group of the fragment graph [CH2, CH2]. This first image shows the tiny group of permutations that swaps the two fragments:


The notation is taken from an excellent book called "Visual Group Theory" that is also associated with some software called group explorer on sourceforge. It might be quite general, I suppose (and I hope I'm using it right), but it shows the permutation that swaps the fragments as a circled s. This is an automorphism with respect to the edges - in other words, after the swap, there are still bonds between [1, 2], [2, 3], [4, 5], and [5-6].

Another part of the automorphism group is a 'flip' like:

which is a little more complex, but shows how 'flipping' each fragment separately combines to form four possible permutations. If this does not seem particularly tricky, consider what happens if you take the direct product of these two groups:

Assuming I have done it right, this should show most (all?) of the automorphisms of the fragment graph. It does look pretty cool, but I don't think that it gets me any closer to implementing the cursed algorithm :)

Comments

Anonymous said…
I really like your blog and i really appreciate the excellent quality content you are posting here for free for your online readers. thanks peace claudia.
Anonymous said…
Give never the wolf the wether to keep.

Popular posts from this blog

chalky

I wanted to show something that hints at the things that the new architecture can afford us: This is using a Java2D graphics Paint object to make it look like chalk...kindof. It's a very simplistic way of doing it by making a small image with a random number of white, gray, lightgray, and black pixels. edit: it doesn't look so good at small scales some tweaking of stroke widths and so on is essential.

The Gale-Ryser Theorem

This is a small aside. While reading a paper by Grüner, Laue, and Meringer on generation by homomorphism they mentioned the Gale-Ryser (GR) theorem. As it turns out, this is a nice small theorem closely related to the better known Erdős-Gallai  (EG). So, GR says that given two partitions of an integer ( p and q)  there exists a (0, 1) matrix   A  iff p*   dominates q such that the row sum vector r(A)  = p  and the column sum vector c(A) = q . As with most mathematics, that's quite terse and full of terminology like 'dominates' : but it's relatively simple. Here is an example: The partitions p  and q  are at the top left, they both sum to 10. Next, p is transposed to get p*  = [5, 4, 1] and this is compared to q at the bottom left. Since the sum at each point in the sequence is greater (or equal) for p*  than q , the former dominates. One possible matrix is at the top left with the row sum vector to the right, and th...

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the ...