Skip to main content

Honeycombs and Macrocyles

Small rings in chemistry are usually laid out as polygons; 5-membered rings as a pentagon, 6-membered as a hexagon, and so on. Once you get beyond about 9-10, this tends to look a little nasty. Or at least, unconventional.

So for 'macrocycles', it makes sense to make a less circular, and more wavy outline. Or, to be more exact, there is an inner cycle and several outer cycles, like this:

To make it clearer, I have used a chemical-like structure with oxygens in the inner ring. These crown ethers are a particularly clear-cut case, as the ethylene linkages force the particular geometry of the drawing. However, it is not so obvious for other sizes of rings - what possible arrangements are there?

Well, it occurred to me today that there is a simple formula for these macrocycle drawings. For a ring of size n with an inner ring of size i and outer rings or size o, you have to have n = (i * o) - i. The formula can be rearranged, but the idea is that you add up all the outer rings and remove the inner one.


So here are some crude representations of such cycles, for n in {9, 12, 14}. Below each cycle is the list of outer cycles. All of these examples are regular, in that they have the same number of vertices in the outer cycle. It is possible - although less desirable - to have different numbers of vertices in the outer cycles.


The version on the left is somewhat uglier than the 'puffed out' one on the left, but on some sense they are the same drawing. They are both (4, 6, 4, 6) in the notation of the previous image. Note that 24 = 4 + 6 + 4 + 6 - 4, which suggests that the previous formula can be generalised a bit to : n = (x0, ..., xr) - r. Each x in the equation is a ring size, and it is the sum of these minus the number of rings.

This immediately suggested a way to make examples - use partitions again! In other words, partitions of n + r for r in the range (3, floor(n / 3)). This produces a whole lot of horrible drawings, such as (3, 3, 9), but it does work. The code is here.

Comments

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin...

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the ...

General Graph Layout : Putting the Parts Together

An essential tool for graph generation is surely the ability to draw graphs. There are, of course, many methods for doing so along with many implementations of them. This post describes one more (or perhaps an existing method - I haven't checked). Firstly, lets divide a graph up into two parts; a) the blocks, also known as ' biconnected components ', and b) trees connecting those blocks. This is illustrated in the following set of examples on 6 vertices: Trees are circled in green, and blocks in red; the vertices in the overlap between two circles are articulation points. Since all trees are planar, a graph need only have planar blocks to be planar overall. The layout then just needs to do a tree layout  on the tree bits and some other layout on the embedding of the blocks. One slight wrinkle is shown by the last example in the image above. There are three parts - two blocks and a tree - just like the one to its left, but sharing a single articulation point. I had...