Skip to main content

Symmetric Generations

I've been trying to work on an implementation of a structure generator algorithm due to Faulon (its a paper in this list somewhere). One problem I have difficulty with is reduction of the number of isomers generated. For example:

It may be hard to read, but the idea is that the full tree of possible ways to attach {Br, Cl, F, I} to c1ccc1 is 4 * 3 * 2 * 1 (you can attach Bromine to all four of the carbons, leaving 3 places to attach chlorine, and so on).

Of course c1(Br)c(Cl)cc1 is the same as c1(Cl)c(Br)cc1 [never mind that C1(Br)=C(Cl)C=C1 is not the same as C1=C(Br)C(Cl)=C1]. Or, in other words, there is a high degree of symmetry in the tree.

There is a way to solve this, perhaps even described in the paper - if I could just understand them...

Comments

Symmetry is indeed the main blocker in structure generators. The only way to get performance is to detect symmetry as soon as possible... the deterministic generator we had in CDK 1.0 was doing this, as there is a trick to detect this in the connectivity matrix, but it needs to be normalized. I never had/took the time to fully grasp the math behind it to isolate the bugs in the implementation. But please do look up the literature; it's a must read for your work.
gilleain said…
Finding the eigenvalues of the matrix, perhaps?

Reading the literature is one thing, understanding it is another. I was reading "Isomorphism, Automorphism Partitioning, and Canonical
Labeling Can Be Solved in Polynomial-Time for Molecular Graphs" (Faulon, 1998) and it's heavy going :(

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:



Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.



The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Trees

Tree generation is a well known (and solved!) problem in computer science. On the other hand, it's pretty important for various problems - in my case, making tree-like fusanes. I'll describe here the slightly tortuous route I took to make trees.

Firstly, there is a famous theorem due to Cayley that the number of (labelled) trees on n vertices is nn - 2 which can be proved by using Prüfer sequences. That's all very well, you might well say - but what does all this mean?

Well, it's not all that important, since there is a fundamental problem with this approach : the difference between a labelled tree and an unlabelled tree. There are many more labeled trees than unlabeled :


There is only one unlabeled tree on 3 vertices, but 3 labeled ones
this is easy to check using the two OEIS sequences for this : A000272 (labeled) and A000055 (unlabeled). For n ranging from 3 to 8 we have [3, 16, 125, 1296, 16807, 262144] labeled trees and [1, 2, 3, 6, 11, 23] unlabeled ones. Only 23 …