A comment on my previous post reminded me of the "EquivalentClassPartitioner" already in the CDK, written back in 2003 by Junfeng Hao and based on this article by Chang-Yu Hu and Lu Xu. After some testing, it seems they give the same results on various molecules - although,

The test molecules I used for comparing speeds are a library of fullerenes that range in size from 20 carbons up to 720. Naturally, I started with the smaller ones, but even there the difference was clear. For instance, here is a table of numbers from the C40 run:

The left-hand column is just the name of the cc1 file, the next two columns are the times for the AtomPartitionRefiner and EquivalentClassPartitioner, and the last two are the order of the automorphism group and the number of equivalence classes. Times are in milliseconds, so clearly the HuXu method is far faster at only one or two ms rather…

**if you only want the equivalence classes**the Hu/Xu method is much, much faster. Like 10-100 times faster.The test molecules I used for comparing speeds are a library of fullerenes that range in size from 20 carbons up to 720. Naturally, I started with the smaller ones, but even there the difference was clear. For instance, here is a table of numbers from the C40 run:

The left-hand column is just the name of the cc1 file, the next two columns are the times for the AtomPartitionRefiner and EquivalentClassPartitioner, and the last two are the order of the automorphism group and the number of equivalence classes. Times are in milliseconds, so clearly the HuXu method is far faster at only one or two ms rather…