Skip to main content

Two Different Ways to Handle Disconnected Graphs when Generating Graphs with Signatures

Disconnected graphs were mentioned in this post on OMG's algorithm. I also said that signatures could not handle such graphs, but this is not totally true. Here are a couple of approaches to handle them.

Firstly, why is this a problem at all? Well, a signature of a graph is a bit like a spanning tree - and the canonical signature is the maximal string form of the set of trees. However, for disconnected graphs you get a spanning forest - which is just a set of spanning trees. The maximum tree from the forest will no longer span the whole graph.


The image shows an example of this for a very simple graph. The upper panel shows a disconnected graph and its corresponding forest. The lower panel shows two different labelings of the same graph (A, B) and their canonical form. The algorithm for canonicalization simply has to 'paste' together canonical labels or signature strings, and has to make sure that a canonical signature is generated for each component. The components are ordered by their canonical strings.

An alternative solution to the problem for generating graphs is mentioned in a blog post by Derrick Stolee. Simply choose the canonical deleted edge to be one that will not disconnect the graph. For example, with an edge-addition canonical path algorithm, any edge that is a bridge (as discussed yesterday) would disconnect the graph if deleted. So the canonical edge is no longer the last edge in the canonically labelled graph but the last non-bridge edge.

Comments

Popular posts from this blog

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…