Skip to main content

Graphs of Trees of Graphs (ok, just timings again)

Line-graphs of search-trees of molecular-graphs, that is. I should also point out that I am not using the cutting-edge development version of OMG, but rather the commit 30b08250efa4.... - sadly, I don't have  java7 on this machine, so I can't run the latest versions.

Anyway, it doesn't make much difference for the alkanes and alkenes. Here are the times in miliseconds, and log(t in ms) for CnH2n and CnH2n+2. Click for bigger, as always:

Clearly AMG (in blue) is significantly slower than OMG (in red), roughly by 10 times. On the other hand, the picture is surprisingly different if we add in a few oxygens:

Weird, but I suspect that this kind of problem has been fixed in more recent versions of OMG. User "mmajid" seems to have been doing some interesting experiments with using bliss instead of nauty,  multithreading, and semicanonical checking.

Comments

Tobias said…
Hi,
just a general heads up, these are great improvements,
considering its a "tiny" version update.

C7H16O2 from 510 sec --> 4 sec = 127 fold faster
C6H14O3 from 387 sec --> 5 sec = 77x speed increase.

That is great news. Actually even stuff like C7H16O3
that was a time-out in the old version runs now in 27 seconds.
Think about a parallel version with 32 threads and it runs in 1 sec.
...and from there another 100-fold increase to match MOLGEN-Demo.

Anyway, I think its great and if some graph people would chime in
and contribute code it surely would even go faster :-)

Cheers
Tobias


Popular posts from this blog

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…