Skip to main content

Using the CDK's group module

There is a new module and package for the CDK that is currently under review. This is a short guide to how to use it - to help both reviewers and users.

The basic idea is that molecules can be considered as a kind of graph, and that one useful thing to calculate about such graphs is the automorphism group that preserves element labels and/or bond labels. To put it another way, calculating the symmetries of the molecule - although I should point out that it's not quite the same as the crystallographic symmetry groups.

As a simple example, consider these two molecules (1,4-cylohexadiene and 4h-pyran) :


They are numbered from 0-5 for programming convenience; on the right each molecule has a table of automorphisms written as permutations in cycle notation. It should be fairly obvious that - for example - the H-Flip sends atom 0 to atom 4, 1 to 3, and fixes 2 and 5. Only the H-Flip is an automorphism for 4h-pyran, due to the oxygen atom.

The code to do this is fairly short and really just involves creating an AtomDiscretePartitionRefiner and then calling the getAutomorphismGroup(IAtomContainer) method. This returns a PermutationGroup which stores the automorphisms. What you do with them then is up to you...

There is a corresponding class to find automorphisms of the bonds of an atom container. This may be less useful, but here is napthalene as an example:


Note that the bonds are numbered, not the atoms; also the two different double-bond arrangements are called a and b for reference. The a form has only the V-Flip automorphism that swaps bonds (1, 2), (3, 10) and so on.

Finally, what are the actual uses in chemistry for this? Well, one possibility is external symmetry numbers (interesting reference, actually) - as also mentioned in this post. Another is molecule generation; it's used heavily in AMG. A future possibility might also be using it in CIP or other chirality code.

Comments

Patrik Rydberg said…
There is already some related code in the CDK which does symmetry of atoms. You might be interested in this, it is the EquivalentClassPartitioner and the function getTopoEquivClassbyHuXu
gilleain said…
This comment has been removed by the author.
gilleain said…
Hmm. I thought it double-posted so I deleted the duplicate comment - and now it's gone..

Anyway, it was :

"Good point, Patrik - one of the strengths of the CDK is that it has multiple solutions. It's also one of the weaknesses!

There was also an ancient branch that had a class to find the symmetries from the 3D structure, that could be integrated somehow. It's a little difficult to make packages written by different authors to work neatly together without making large changes. Some sort of interface, perhaps... "

Popular posts from this blog

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…