Skip to main content

External Symmetry Numbers and Graph Automorphism Groups

So, there was a question on BioStar about calculating the 'external symmetry number' of a molecule - something I hadn't heard of, but turns out to be something like the subgroup of rotations and reflections of the automorphism group of a graph. Since I have some code to calculate the automorphism group, I naïvely thought it would be simple...

The questioner - Nick Vandewiele - kindly provided some test cases, which ended up as this code. Although many of these tests now pass, they only do so because I commented out the hydrogen adding! :)

On the one hand, there are some recent improvements that try to handle vertex and edge 'colors' - in other words, element symbols and bond orders. For example, consider the improbable molecule C1OCO1 :
These are the three permutations that leave the carbons and the oxygens in the same positions; when you include the identity, that makes 4. Cyclobutane (without hydrogens!) has a symmetry group of order 8. Similarly, cyclobutadiene now gives 4 instead of 8.

So what goes wrong when there are hydrogens? Well, it's a deeper problem than just hydrogens, but it starts there. Consider methane : it has an external symmetry number of 12, but my code gives 24 - why? Well the main answer is 'inversion', look:

The permutation (0)(1)(2, 3)(4) just swaps hydrogens 2 and 3. This effectively changes the chirality of the molecule ... sortof. It's not actually chiral, but its a reasonable description of the transformation. Apparently, this does happen (another thing I didn't know; there are lots more :) according to this document, but quite slowly compared to rotations - "slower than 1 cycle s-1".

This kind of pseudo-chirality will happen at any tetrahedral center. Or at any atom with 4 neighbours, I think - like XeF4, which is square planar. As an example, take this spira-fused ring system:

with a transform that swaps 7 and 9 but not the pairs (0, 5)(1, 4)(2, 3). Effectively this changes the parity at carbon 6. Somehow I doubt that this kind of 'movement' actually occurs in solution, but I could well be wrong. In any case, it seems likely that the external symmetry number is 2, and not 4.

In summary, it is probably not possible to calculate the external symmetry number correctly without 3D coordinates, or symmetry axes, or point groups. I have a feeling that the positional info could be recorded as a 3D combinatorial map which would give explicit orientations for atoms with four neighbours.

Comments

Popular posts from this blog

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

Signatures with user-defined edge colors

A bug in the CDK implementation of my signature library turned out to be due to the fact that the bond colors were hard coded to just recognise the labels {"-", "=", "#" }. The relevant code section even had an XXX above it!

Poor show, but it's finally fixed now. So that means I can handle user-defined edge colors/labels - consider the complete graph (K5) below:

So the red/blue colors here are simply those of a chessboard imposed on top of the adjacency matrix - shown here on the right. You might expect there to be at least two vertex signature classes here : {0, 2, 4} and {1, 3} where the first class has vertices with two blue and two red edges, and the second has three blue and two red.

Indeed, here's what happens for K4 to K7:

Clearly even-numbered complete graphs have just one vertex class, while odd-numbered ones have two (at least?). There is a similar situation for complete bipartite graphs:

Although I haven't explored any more of these…