Skip to main content

Comparing the EquivalentClassPartitioner and PartitionRefiner : Fullerenes

comment on my previous post reminded me of the "EquivalentClassPartitioner" already in the CDK, written back in 2003 by Junfeng Hao and based on this article by Chang-Yu Hu and Lu Xu. After some testing, it seems they give the same results on various molecules - although, if you only want the equivalence classes the Hu/Xu method is much, much faster. Like 10-100 times faster.

The test molecules I used for comparing speeds are a library of fullerenes that range in size from 20 carbons up to 720. Naturally, I started with the smaller ones, but even there the difference was clear. For instance, here is a table of numbers from the C40 run:



The left-hand column is just the name of the cc1 file, the next two columns are the times for the AtomPartitionRefiner and EquivalentClassPartitioner, and the last two are the order of the automorphism group and the number of equivalence classes. Times are in milliseconds, so clearly the HuXu method is far faster at only one or two ms rather than 30-70 ms. There is presumably some VM speedup going on that accounts for the apparent increase in speed for the first few examples.

It's a similar picture for larger fullerenes : for a typical C92, the PartitionRefiner takes 700 ms and HuXu only 7 ms. There is a speedup for more symmetric molecules - the larger the value of |Aut| (the group order), the faster the PartitionRefiner is. This is to be expected, as it is using the automorphisms to prune the search.

The tests, and some output are in this github repo (fullerene library not included)Finally, here is another image of a fullerene (one of the test cases from the EquivalentClassPartitioner):


because why not. Colourful, is it not?

Comments

Gilleain, do I understand the coloring correctly that this fullerene only has one symmetrical phenyl ring, the outer one?
gilleain said…
That's correct. The gray carbon (39) seems to be 'disordering' the structure from one end. Like a pebble dropped in a still pond. Sort of.

I really should try getting the Schlegel layout stuff working on fullerenes. I got close over the summer, but the optimisation (annealing) part was broken.
J May said…
In my mind the automorphism group is a lot harder to calculate then the equivalent classes so the speed difference is expected. The code looks great, just finished reviewing and about to sign off.
gilleain said…
True - it is harder to calculate. However, I have a sneaking suspicion that you can get the group from the equivalence classes, and that this might be faster. I don't know what the algorithm is, exactly, as I've tried simple ways to do it, that didn't seem to work...

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:



Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.



The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Trees

Tree generation is a well known (and solved!) problem in computer science. On the other hand, it's pretty important for various problems - in my case, making tree-like fusanes. I'll describe here the slightly tortuous route I took to make trees.

Firstly, there is a famous theorem due to Cayley that the number of (labelled) trees on n vertices is nn - 2 which can be proved by using Prüfer sequences. That's all very well, you might well say - but what does all this mean?

Well, it's not all that important, since there is a fundamental problem with this approach : the difference between a labelled tree and an unlabelled tree. There are many more labeled trees than unlabeled :


There is only one unlabeled tree on 3 vertices, but 3 labeled ones
this is easy to check using the two OEIS sequences for this : A000272 (labeled) and A000055 (unlabeled). For n ranging from 3 to 8 we have [3, 16, 125, 1296, 16807, 262144] labeled trees and [1, 2, 3, 6, 11, 23] unlabeled ones. Only 23 …