Skip to main content

Tests that Pass, Tests that Fail

The AMG (alternative molecule generator) is now good enough to run proper tests on, with help from Tobias Kind who has long promised - or threatened, perhaps :) - to test a structure generators. It should lead to software that is of more than theoretical interest.

Currently, there is a download available from github, or it can be built from the project directory if you are familiar with ant and are willing to change the build.properties file to point to a CDK directory. There is an instructions.txt file, with some examples of usages; the -h flag also works as might be expected.

As for passing tests, it currently does better with hydrocarbons - CnH2n + x for x in {-2, 0, 2}. However, it's starting to improve on the more mixed formulae, with oxygen, nitrogen, and so on. The two child-listing methods (filter/symmetric) have different behaviour, annoyingly.

Looking at one of the two pairs of duplicates in the set of C6H4 structures shows why it fails. The method here is the symmetry one, where only the minimal representative of an augmentation under the automorphism group of the parent is chosen. Sadly, this picture shows a case where the method fails:


The parent is highlighted in grey, and the child graphs (A, B) are shown on left and right. The central image shows how both 5a and 5b are adding different sets of bonds. Since the automorphism group of the parent has only the identity permutation (ie: it is trivial) any set of bonds will be equivalent.

I had realised that this could happen, but I foolishly assumed that it was rarer than this. That may be the case for simple graphs, but apparently not for multigraphs like this...

Comments

Popular posts from this blog

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

Signatures with user-defined edge colors

A bug in the CDK implementation of my signature library turned out to be due to the fact that the bond colors were hard coded to just recognise the labels {"-", "=", "#" }. The relevant code section even had an XXX above it!

Poor show, but it's finally fixed now. So that means I can handle user-defined edge colors/labels - consider the complete graph (K5) below:

So the red/blue colors here are simply those of a chessboard imposed on top of the adjacency matrix - shown here on the right. You might expect there to be at least two vertex signature classes here : {0, 2, 4} and {1, 3} where the first class has vertices with two blue and two red edges, and the second has three blue and two red.

Indeed, here's what happens for K4 to K7:

Clearly even-numbered complete graphs have just one vertex class, while odd-numbered ones have two (at least?). There is a similar situation for complete bipartite graphs:

Although I haven't explored any more of these…