Skip to main content

Expensive and Exhaustive Ring Finding

As the title states - this is a computationally expensive way to get all rings in a graph, but it's fairly simple, and illustrates some nice principles. For a better way to do things, perhaps Rich Apodaca's description of the Hanser, Jauffret, and Kaufmann algorithm would suit.

Anyway, back to the expensive way. The set of cycles in a graph form what is called a 'cycle space' - which I didn't understand at all for a while, but is not actually that hard. For example, here is a basis set for the cycle space on a 3x3 hexagonal lattice:


Looks like a bunch of cycles, really. The important thing is that it is possible to combine any subset of these cycles to get another cycle (or one of the other cycles in the basis). By 'combine' we mean XOR or the symmetric difference of the edge vectors. This sounds more complicated than necessary, so it's useful to consider a simple example. Well, the example is simple - the picture is not:



On the left here is a graph (top left) and a cycle basis (lower left; A-C). Each cycle is just a bit set (vector) of edges. So cycle A is the set of edges {a, b, d, j} and cycle C is {e, f, g, h}. On the right is one example of a combination of two cycles - known as a ring sum - to produce a new cycle D.

It should be clear that A + B is equal to {a, b, d, j} + {c, d, f, i} - {d}. In words, this is the union of the edge sets minus their intersection. One important point is that the ring sum of two disconnected cycles is just those two cycles. So A + C = A + C...

All the cycles in the graph can be generated in this way - for example A + B + C = {a, b, c, e, g, h, i, j} or the outer cycle of the graph. I think I am right in saying that the order of combination does not matter.

So why is this expensive? Well, the problem lies in the fact that there are a large number of subsets of the basis set - 2 to the power |S|, for the set S. Many of these will be the same cycle, so there are undoubtedly ways to cleverly choose subsets; I'm not sure what these are.

Finally, here is an example of a set of (unique) cycles on a lattice. The procedure to get these was ridiculous : a) find all rings as above, b) layout to get the faces, c) construct the inner dual, d) make a signature of dual to filter duplicates.



Obviously, from a drawing point of view, the top row are nicely symmetric ways to layout 18-rings. Probably the top-center and top-right are the best, as they are also more convex.

Comments

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the

General Graph Layout : Putting the Parts Together

An essential tool for graph generation is surely the ability to draw graphs. There are, of course, many methods for doing so along with many implementations of them. This post describes one more (or perhaps an existing method - I haven't checked). Firstly, lets divide a graph up into two parts; a) the blocks, also known as ' biconnected components ', and b) trees connecting those blocks. This is illustrated in the following set of examples on 6 vertices: Trees are circled in green, and blocks in red; the vertices in the overlap between two circles are articulation points. Since all trees are planar, a graph need only have planar blocks to be planar overall. The layout then just needs to do a tree layout  on the tree bits and some other layout on the embedding of the blocks. One slight wrinkle is shown by the last example in the image above. There are three parts - two blocks and a tree - just like the one to its left, but sharing a single articulation point. I had