Skip to main content

PVR numbering scheme not solution to all woes : film at 11

On a whim, I decided to try generating all adjacency matrices with the property that they are PVR numbered. The short summary of that link is that a matrix can be expressed as a sequence of positive integers by considering each row of the matrix as a binary number.

The point of doing this (I thought) was that you can number a molecule in such a way that the adjacency matrix is PVR-numbered, and that this is canonical. So my cunning plan was to generate all sequences of n numbers that are partially ordered, choosing them from [1, 2n] to give all non-redundant (simple) graphs with n vertices.

Unfortunately, it seems like this can't work:


This image shows all adjacency matrices for n = 3 which are PVR-numbered. They are made by backtracking through all sequences of integers with a partial order, pruning the solutions using the symmetry of the matrix as a constraint.

Anyway, the point is that the first two graphs are clearly isomorphic! More simply, they both represent propane. Maybe this is well known, but it's a surprise to me...

Comments

The method used by the previous deterministic structure generator used a similar approach... If just looking at rows may not be enough... what happens if you would look at the ordering of the columns too?
Anonymous said…
What a great web log. I spend hours on the net reading blogs, about tons of various subjects. I have to first of all give praise to whoever created your theme and second of all to you for writing what i can only describe as an fabulous article. I honestly believe there is a skill to writing articles that only very few posses and honestly you got it. The combining of demonstrative and upper-class content is by all odds super rare with the astronomic amount of blogs on the cyberspace.

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin

Király's Method for Generating All Graphs from a Degree Sequence

After posting about the Hakimi-Havel  theorem, I received a nice email suggesting various relevant papers. One of these was by Zoltán Király  called " Recognizing Graphic Degree Sequences and Generating All Realizations ". I have now implemented a sketch of the main idea of the paper, which seems to work reasonably well, so I thought I would describe it. See the paper for details, of course. One focus of Király's method is to generate graphs efficiently , by which I mean that it has polynomial delay. In turn, an algorithm with 'polynomial delay' takes a polynomial amount of time between outputs (and to produce the first output). So - roughly - it doesn't take 1s to produce the first graph, 10s for the second, 2s for the third, 300s for the fourth, and so on. Central to the method is the tree that is traversed during the search for graphs that satisfy the input degree sequence. It's a little tricky to draw, but looks something like this: At the top

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the