Skip to main content

Combinations and Filters

So there is now the beginning of a possible re-write of the DBST that uses basically the same approach, but is a bit more flexible. The code is here, but it's still a bit rough.

The original idea seems to have been to encode arrangements of double bonds for different ring sizes as a kind of 'library'. For each ring, a particular arrangement is picked until all possible combinations are generated. As a concrete example, see this example for a napthalene skeleton:

Here, the arrangements (1, 2) are applied to each ring (A, B) and then these are combined. Of the four combinations (A1B1, A2B1, A1B2, A2B2) only three are valid. The A1B2 combination has two atoms highlighted in red that have two double bonds and one single bond.

So one way to filter the combinations is to try and type the atoms, and reject any structure that has untypeable atoms. Another possible filter rejects structures that don't have atoms that are SP2 hybridized. Both of these are from the original code, but implemented as instances of a ChemicalFilter interface.

This is quite similar - uncoincidentally- to the approach in SMSD where graph-theoretical tools are used to generate possible subgraph matches, and then a chemical filter is used to rank the results. Ranking and filtering are not quite the same, so perhaps there should be a ChemicalRanker interface? It would be a little like an Enumeration, except that it might not be a total ordering, but a partial order.

Comments

Popular posts from this blog

chalky

I wanted to show something that hints at the things that the new architecture can afford us: This is using a Java2D graphics Paint object to make it look like chalk...kindof. It's a very simplistic way of doing it by making a small image with a random number of white, gray, lightgray, and black pixels. edit: it doesn't look so good at small scales some tweaking of stroke widths and so on is essential.

The Gale-Ryser Theorem

This is a small aside. While reading a paper by Grüner, Laue, and Meringer on generation by homomorphism they mentioned the Gale-Ryser (GR) theorem. As it turns out, this is a nice small theorem closely related to the better known Erdős-Gallai  (EG). So, GR says that given two partitions of an integer ( p and q)  there exists a (0, 1) matrix   A  iff p*   dominates q such that the row sum vector r(A)  = p  and the column sum vector c(A) = q . As with most mathematics, that's quite terse and full of terminology like 'dominates' : but it's relatively simple. Here is an example: The partitions p  and q  are at the top left, they both sum to 10. Next, p is transposed to get p*  = [5, 4, 1] and this is compared to q at the bottom left. Since the sum at each point in the sequence is greater (or equal) for p*  than q , the former dominates. One possible matrix is at the top left with the row sum vector to the right, and th...

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the ...