Skip to main content

Molecule Layouts

I've been doing experimental work on layouts for the CDK. Not for atoms, exactly, for which the StructureDiagramGenerator is doing a pretty good job - could be better, of course, but what couldn't?

No, layout of MoleculeSets, and Reactions. Well actually IMoleculeSets and IReactions. With an ILayout class - my apologies to anyone who doesn't like generics, but it can be quite useful. Anyway, here is an example of what it is looking like at the moment:

Hmmm. Well, it is a grid I suppose. The problems with the ring bonds are known to me, please do not mention them >:|

The code for this is quite short:
IMoleculeSet moleculeSet = makeMolSet();
ILayout<IMoleculeSet> gridLayout = new GridMoleculeSetLayout(3, 3);
makeImage(moleculeSet, gridLayout, "three_by_three", 500, 500);
where the methods 'makeMolSet' and 'makeImage' do what you might expect (I hope :). Similarly:
IMoleculeSet molSet = makeMolSet();
AxisOrientation o = AxisOrientation.PLUS_X_PLUS_Y;
ILayout<IMoleculeSet> layout = new LinearMoleculeSetLayout(new StandardMoleculeLayout(), 3, o);
makeImage(molSet, layout, "xypos", 500, 500);
and this produces an image like this:

which is also ... alright. Getting there.

Comments

Anonymous said…
Hey - I am really glad to find this. great job!

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin

Király's Method for Generating All Graphs from a Degree Sequence

After posting about the Hakimi-Havel  theorem, I received a nice email suggesting various relevant papers. One of these was by Zoltán Király  called " Recognizing Graphic Degree Sequences and Generating All Realizations ". I have now implemented a sketch of the main idea of the paper, which seems to work reasonably well, so I thought I would describe it. See the paper for details, of course. One focus of Király's method is to generate graphs efficiently , by which I mean that it has polynomial delay. In turn, an algorithm with 'polynomial delay' takes a polynomial amount of time between outputs (and to produce the first output). So - roughly - it doesn't take 1s to produce the first graph, 10s for the second, 2s for the third, 300s for the fourth, and so on. Central to the method is the tree that is traversed during the search for graphs that satisfy the input degree sequence. It's a little tricky to draw, but looks something like this: At the top

General Graph Layout : Putting the Parts Together

An essential tool for graph generation is surely the ability to draw graphs. There are, of course, many methods for doing so along with many implementations of them. This post describes one more (or perhaps an existing method - I haven't checked). Firstly, lets divide a graph up into two parts; a) the blocks, also known as ' biconnected components ', and b) trees connecting those blocks. This is illustrated in the following set of examples on 6 vertices: Trees are circled in green, and blocks in red; the vertices in the overlap between two circles are articulation points. Since all trees are planar, a graph need only have planar blocks to be planar overall. The layout then just needs to do a tree layout  on the tree bits and some other layout on the embedding of the blocks. One slight wrinkle is shown by the last example in the image above. There are three parts - two blocks and a tree - just like the one to its left, but sharing a single articulation point. I had