Skip to main content

Cuneane Maps

So, to continue about combinatorial maps, here are some more intricate diagrams. Firstly, an embedding of cuneane with a 4-cycle as the outer face:

The permutations below are just for reference. Anyway, with this embedding, the cycles of ϕ are (0,8,23,21,5)(1,2,11,7)(3,4,17,15)(6,12,9)(10,14,18,22,13)(16,20,19) which does indeed have one for each face, including the boundary. If you use a different embedding, naturally you get a different map:

Which is quite different, and has ϕ of (0,6,10,3)(1,4,20,22,9)(2,14,16,5)(7,8,13)(11,12,23,19,15)(17,18,21) - again, 6 cycles for the 6 rings. And one to rule them all, and in the darkness bind them, of course. The cycles of darts are shown in this composite image:

Some of the triangular faces are missing the dart labels, as they were getting too crowded. Well, the whole thing is too crowded, but still. Highlighted in red in each are the darts corresponding to the outer face of the other embedding. Not sure what it means, though.

Finally, some references:
1) doi: citeseer link - it's a dissertation, not a paper, but interesting.
2) Signatures of combinatorial maps (direct link to pdf) S Gosselin, G Damiand, and Christine Solnon. Damiand is the author of some of the images on wikipedia about combinatorial maps...


Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:

Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:

One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:

Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.

The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Trees

Tree generation is a well known (and solved!) problem in computer science. On the other hand, it's pretty important for various problems - in my case, making tree-like fusanes. I'll describe here the slightly tortuous route I took to make trees.

Firstly, there is a famous theorem due to Cayley that the number of (labelled) trees on n vertices is nn - 2 which can be proved by using Prüfer sequences. That's all very well, you might well say - but what does all this mean?

Well, it's not all that important, since there is a fundamental problem with this approach : the difference between a labelled tree and an unlabelled tree. There are many more labeled trees than unlabeled :

There is only one unlabeled tree on 3 vertices, but 3 labeled ones
this is easy to check using the two OEIS sequences for this : A000272 (labeled) and A000055 (unlabeled). For n ranging from 3 to 8 we have [3, 16, 125, 1296, 16807, 262144] labeled trees and [1, 2, 3, 6, 11, 23] unlabeled ones. Only 23 …