Skip to main content

Millions of Graphs : Slow Yet Correct Generation

My newest version of canonical path augmentation code for generating graphs has reached a new high point - generating 11,716,571 graphs on ten vertices. Of course, it also gets the number of nines (261,080) and the number of eights (11,117) correct as well ... which is great, but I'm cautious about declaring it 'correct'. Especially given the last version did not get the sevens and eights right. See, for example these past failures:



So how does it get the right answer? Well, it now properly uses the method mentioned in this post to only pick canonical deletions that are not cut-vertices. That turns out only to be necessary for graphs on 8 vertices, but you still have to check this for all augmentations, which seems expensive. However, there was a more fundamental problem; consider the example below (basically nicked from Derick Stolee's blog post):



Obviously A and B are isomorphic, yet how do we properly distinguish them? Well, the key is the set of vertices added to - on the image, these are the labels on the edges between graphs : {0}, {1, 3}, etc. When a new graph is created, a vertex is chosen - using canonical labelling, in my case - and the vertices attached to it must be the ones we used to make that augmented graph. I was checking the set of augmented vertices in the automorphism group of the parent, not the child.

So, the canonical checking is now better. I seem to have written a thousand of these methods, but this one (I think!) finally does it right. What I was getting wrong was checking the orbit of the canonical deletion vertex, and not the orbit of the set of vertices it was being connected to. Great! Now what? How long does it take? See this, where the purple line is the new code, and the others are older attempts:




Clearly the problem now is that of verifying the results - it's quite slow to generate these large datasets, and storing them (uncompressed) takes a lot of space. The nines took minutes and megabytes of space, while the tens took hours and over a gigabyte. At this rate, the 11s would take days and 10s of gigabytes. In any case - where do you stop?

Comments

Tobias Kind said…
Hi,
I tried to download the code but the old URL gives the good ole 404.
https://github.com/gilleain/generate/blob/master/src/test/scheme3/TimingTests.java

Also for those people interested, but not able to install all JAVA dependencies,
a compiled JAR with *.sh *.bat *.exe would be good (that would be me and others :-).

For these benchmarks it would be also useful to have the machine, CPU
and disk/ramdisk specifications.

Good to read some new stuff (heavy github contributions in April/May 2015)
Cheers
Tobias

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the

General Graph Layout : Putting the Parts Together

An essential tool for graph generation is surely the ability to draw graphs. There are, of course, many methods for doing so along with many implementations of them. This post describes one more (or perhaps an existing method - I haven't checked). Firstly, lets divide a graph up into two parts; a) the blocks, also known as ' biconnected components ', and b) trees connecting those blocks. This is illustrated in the following set of examples on 6 vertices: Trees are circled in green, and blocks in red; the vertices in the overlap between two circles are articulation points. Since all trees are planar, a graph need only have planar blocks to be planar overall. The layout then just needs to do a tree layout  on the tree bits and some other layout on the embedding of the blocks. One slight wrinkle is shown by the last example in the image above. There are three parts - two blocks and a tree - just like the one to its left, but sharing a single articulation point. I had