Skip to main content

Tailor : Descriptions

Tailor (https://github.com/gilleain/tailor) is a project that grew out of my attempts to search for catmats niches with Prof. Milner-White. The goal of the project was to allow users to define protein structural patterns (called 'descriptions') along with a set of associated measures. More on measures later, but first what is a description?

Here is a very simple example:


The lines don't have arrowheads, but this is implicitly a tree/DAG rather than a graph. There is a root ProteinDescription and the leaves are AtomDescriptions - the DistanceCondition is referencing the two atoms. Basically, this just defines a pattern of two amino acids (GLY, ALA) with a distance of less than 3Å between the N and O atoms.

There are still a lot of details to be worked out here. Can the groups be separated along the chain? If they can, should that require the description to be explicit as to the relationship between sibling nodes? How do we define any number of matches (as with a helix, or strand)?

After some messing about with some ideas from regular expressions, I've abandoned for now the idea of having metacharacters like ".*" or ".+" as it would be hellishly difficult to match. Consider this description:


If you wanted to have the middle two groups repeated any number of times - the equivalent of "A.*G" as a sequence regular expression - how would that work? You would have to test the torsion condition for any number of repeated groups, but that requires the 'capping' residues to be present.

In any case, the code is slowly being revived - with better tests! - and hopefully should be more usable in the New Year...

Comments

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin...

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the ...

General Graph Layout : Putting the Parts Together

An essential tool for graph generation is surely the ability to draw graphs. There are, of course, many methods for doing so along with many implementations of them. This post describes one more (or perhaps an existing method - I haven't checked). Firstly, lets divide a graph up into two parts; a) the blocks, also known as ' biconnected components ', and b) trees connecting those blocks. This is illustrated in the following set of examples on 6 vertices: Trees are circled in green, and blocks in red; the vertices in the overlap between two circles are articulation points. Since all trees are planar, a graph need only have planar blocks to be planar overall. The layout then just needs to do a tree layout  on the tree bits and some other layout on the embedding of the blocks. One slight wrinkle is shown by the last example in the image above. There are three parts - two blocks and a tree - just like the one to its left, but sharing a single articulation point. I had...