Skip to main content

Tailor : Descriptions

Tailor (https://github.com/gilleain/tailor) is a project that grew out of my attempts to search for catmats niches with Prof. Milner-White. The goal of the project was to allow users to define protein structural patterns (called 'descriptions') along with a set of associated measures. More on measures later, but first what is a description?

Here is a very simple example:


The lines don't have arrowheads, but this is implicitly a tree/DAG rather than a graph. There is a root ProteinDescription and the leaves are AtomDescriptions - the DistanceCondition is referencing the two atoms. Basically, this just defines a pattern of two amino acids (GLY, ALA) with a distance of less than 3Å between the N and O atoms.

There are still a lot of details to be worked out here. Can the groups be separated along the chain? If they can, should that require the description to be explicit as to the relationship between sibling nodes? How do we define any number of matches (as with a helix, or strand)?

After some messing about with some ideas from regular expressions, I've abandoned for now the idea of having metacharacters like ".*" or ".+" as it would be hellishly difficult to match. Consider this description:


If you wanted to have the middle two groups repeated any number of times - the equivalent of "A.*G" as a sequence regular expression - how would that work? You would have to test the torsion condition for any number of repeated groups, but that requires the 'capping' residues to be present.

In any case, the code is slowly being revived - with better tests! - and hopefully should be more usable in the New Year...

Comments

Popular posts from this blog

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

Signatures with user-defined edge colors

A bug in the CDK implementation of my signature library turned out to be due to the fact that the bond colors were hard coded to just recognise the labels {"-", "=", "#" }. The relevant code section even had an XXX above it!

Poor show, but it's finally fixed now. So that means I can handle user-defined edge colors/labels - consider the complete graph (K5) below:

So the red/blue colors here are simply those of a chessboard imposed on top of the adjacency matrix - shown here on the right. You might expect there to be at least two vertex signature classes here : {0, 2, 4} and {1, 3} where the first class has vertices with two blue and two red edges, and the second has three blue and two red.

Indeed, here's what happens for K4 to K7:

Clearly even-numbered complete graphs have just one vertex class, while odd-numbered ones have two (at least?). There is a similar situation for complete bipartite graphs:

Although I haven't explored any more of these…