Skip to main content

Multi-view

A quick example of a mini-application made using the new JChempaint renderer:

the picture is of an isomer space (C3H7NO), with compact mode on and atoms rendered as circles. The code is here, for now:

http://gist.github.com/70342

which is a kind of dumb way to achieve this, as it creates an instance of a renderer for each molecule, instead of adding them to a molecule set, and then laying that out...

edit: just realised; it's rendering the hydrogens as compact black circles :(

edit2: Ahhh. that's better:



edit3: Ha! This was a mistake, but it looks kind of cool:

Comments

Rajarshi said…
Very cool. From your description I understand that it'd be possible to layout multiple molecules with a single renderer? Does this mean it can layout disconnected components? Or should that be done by splitting it up and supplying it as a 2 item IMoleculeSet?
I just wondered if this might be a better molecular table for Bioclipse... I know the traditional spreadsheet approach, with structures and properties in rows...

But Bioclipse actually has a Properties View, so why not show a table like yours, and just have all the properties stay i nthe Properties View...
gilleain said…
Rajarshi: It's possible to render disconnected atom containers, or molecule sets. However, the renderer will not lay them out.

A nice (future!) project would be to make layout managers - probably using the same command design pattern as java does (LayoutManager).

Egon: Maybe, maybe not. When you get very large numbers, there's not much difference between 5 columns of 100 rows and one column and 500 rows.

Well, okay, so the difference is 400, but still.

Oh, now I see. The properties for each item would be down below. Hmmm.
Abhishek Tiwari said…
Aha, I am impressed with this blog, I just added this on my list of blogs about bioinformatics and chemoinformatics programming-

http://www.abhishek-tiwari.com/2009/02/30-blogs-about-bioinformatics-and.html
Gilleain, or on the left or right side... you choose :)

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …