Skip to main content

Exploring the wild beasts of the layout jungle

There was a bug submitted to the CDK sourceforge tracker (bug number 2783741) with a list of molecules that are laid out badly. I had a look at some of them with the help of bioclipse. For example, this calix[4]arene:

or this:

which is a clearer case of something going wrong. More difficult is structures that are fully 3D, like:


Can you guess what it is? :) Try the 3D version (also made with bioclipse, using the CDK 3D layout):

It's a paracyclophane! The phenyl rings are lost in the 2D layout because there is a bigger 'ring'. Perhaps a chemist would look at the 3D structure and think that those chains are linkers, not parts of a ring, but the algorithm doesn't know this.

I think that it is difficult to have general rules for this. Of course, any fully 3D structure will be difficult to lay out in 2D (if it is not embeddable in the plane then it is impossible) so things like this:


are truly awful.

Comments

These larger ring systems are a problem indeed. I recently added some templates to cover some larger ring systems of some size, giving them the more common 120 degree angles, but more are needed...

Or, an algorithm to layout ring systems of 10 bonds and larger into a 120 angle layout... sort of like a multi-phenyl system, but then without the inner atoms, and just the edge...

This is when I found that the template matcher took into account bond orders, basically matching these templates only match the cylco-foo-ane, and not the variants with -[di|tri|etc]-enes, -ynes, etc...
The current standard in SDG is set by the guys from CCG (http://dx.doi.org/10.1021/ci050550m). Those large rings, btw, can be easily laid-out with a honey-comb-embedding algorithm and need no templates.
Yes, indeed, no honey-cumb templates needed once we have an implementation of that algorithm.

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:



Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.



The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Trees

Tree generation is a well known (and solved!) problem in computer science. On the other hand, it's pretty important for various problems - in my case, making tree-like fusanes. I'll describe here the slightly tortuous route I took to make trees.

Firstly, there is a famous theorem due to Cayley that the number of (labelled) trees on n vertices is nn - 2 which can be proved by using Prüfer sequences. That's all very well, you might well say - but what does all this mean?

Well, it's not all that important, since there is a fundamental problem with this approach : the difference between a labelled tree and an unlabelled tree. There are many more labeled trees than unlabeled :


There is only one unlabeled tree on 3 vertices, but 3 labeled ones
this is easy to check using the two OEIS sequences for this : A000272 (labeled) and A000055 (unlabeled). For n ranging from 3 to 8 we have [3, 16, 125, 1296, 16807, 262144] labeled trees and [1, 2, 3, 6, 11, 23] unlabeled ones. Only 23 …