Skip to main content

Exploring the wild beasts of the layout jungle

There was a bug submitted to the CDK sourceforge tracker (bug number 2783741) with a list of molecules that are laid out badly. I had a look at some of them with the help of bioclipse. For example, this calix[4]arene:

or this:

which is a clearer case of something going wrong. More difficult is structures that are fully 3D, like:


Can you guess what it is? :) Try the 3D version (also made with bioclipse, using the CDK 3D layout):

It's a paracyclophane! The phenyl rings are lost in the 2D layout because there is a bigger 'ring'. Perhaps a chemist would look at the 3D structure and think that those chains are linkers, not parts of a ring, but the algorithm doesn't know this.

I think that it is difficult to have general rules for this. Of course, any fully 3D structure will be difficult to lay out in 2D (if it is not embeddable in the plane then it is impossible) so things like this:


are truly awful.

Comments

These larger ring systems are a problem indeed. I recently added some templates to cover some larger ring systems of some size, giving them the more common 120 degree angles, but more are needed...

Or, an algorithm to layout ring systems of 10 bonds and larger into a 120 angle layout... sort of like a multi-phenyl system, but then without the inner atoms, and just the edge...

This is when I found that the template matcher took into account bond orders, basically matching these templates only match the cylco-foo-ane, and not the variants with -[di|tri|etc]-enes, -ynes, etc...
The current standard in SDG is set by the guys from CCG (http://dx.doi.org/10.1021/ci050550m). Those large rings, btw, can be easily laid-out with a honey-comb-embedding algorithm and need no templates.
Yes, indeed, no honey-cumb templates needed once we have an implementation of that algorithm.

Popular posts from this blog

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Signatures with user-defined edge colors

A bug in the CDK implementation of my signature library turned out to be due to the fact that the bond colors were hard coded to just recognise the labels {"-", "=", "#" }. The relevant code section even had an XXX above it!

Poor show, but it's finally fixed now. So that means I can handle user-defined edge colors/labels - consider the complete graph (K5) below:

So the red/blue colors here are simply those of a chessboard imposed on top of the adjacency matrix - shown here on the right. You might expect there to be at least two vertex signature classes here : {0, 2, 4} and {1, 3} where the first class has vertices with two blue and two red edges, and the second has three blue and two red.

Indeed, here's what happens for K4 to K7:

Clearly even-numbered complete graphs have just one vertex class, while odd-numbered ones have two (at least?). There is a similar situation for complete bipartite graphs:

Although I haven't explored any more of these…