Skip to main content

Chemicals as colored graphs

The interface between maths and chemistry can be tricky when it comes to terminology - sets (maths) have elements, chemistry has a different kind of element; graphs have colors which are usually just numbers, diagrams of chemicals have colors which usually relate to the element type of the atom, and so on.

So, for maximum confusion, here are two pictures of graphs (that could represent chemical connectivity) colored by equivalence class (determined by signature). The signature trees are also drawn with graphical colors, but these represent the integer colors in the signature, which are not the same as the colors used to indicate equivalence class. Firstly, a structure that the smiles algorithm is meant to have trouble with (but may not exist):


It looks quite strained, so I expect that it may not be possible to synthesise. Another multi-ring system is this one:



I don't even know what this one would be called, even if it did exist. Annoyingly, this structure triggers a bug if the two dark blue atoms are connected. This makes the graph 3-regular, but the yellow equivalence class is split, which shouldn't happen.

Comments

This comment has been removed by the author.
Gilleain, in the first graph, I do not see the equivalence of all four cyan nodes... the top two are not really equivalent to the bottom two, or are they? If so, why? To me, they seem to have different environments...
gilleain said…
Ah top marks for spatial awareness, but only half for colour comparison :)

The upper two are what Rasmol used to call "Sea green", while the lower two are cyan. The trees on the right (which are the signatures) are arranged in the same layer order as the graph.
Oh, wow... those are two different colors! Hahaha... :)

R has nice methods to create a list of colors where you pick the number of colors and it optimizes for contrast :)

Popular posts from this blog

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…