Skip to main content

Chemicals as colored graphs

The interface between maths and chemistry can be tricky when it comes to terminology - sets (maths) have elements, chemistry has a different kind of element; graphs have colors which are usually just numbers, diagrams of chemicals have colors which usually relate to the element type of the atom, and so on.

So, for maximum confusion, here are two pictures of graphs (that could represent chemical connectivity) colored by equivalence class (determined by signature). The signature trees are also drawn with graphical colors, but these represent the integer colors in the signature, which are not the same as the colors used to indicate equivalence class. Firstly, a structure that the smiles algorithm is meant to have trouble with (but may not exist):


It looks quite strained, so I expect that it may not be possible to synthesise. Another multi-ring system is this one:



I don't even know what this one would be called, even if it did exist. Annoyingly, this structure triggers a bug if the two dark blue atoms are connected. This makes the graph 3-regular, but the yellow equivalence class is split, which shouldn't happen.

Comments

This comment has been removed by the author.
Gilleain, in the first graph, I do not see the equivalence of all four cyan nodes... the top two are not really equivalent to the bottom two, or are they? If so, why? To me, they seem to have different environments...
gilleain said…
Ah top marks for spatial awareness, but only half for colour comparison :)

The upper two are what Rasmol used to call "Sea green", while the lower two are cyan. The trees on the right (which are the signatures) are arranged in the same layer order as the graph.
Oh, wow... those are two different colors! Hahaha... :)

R has nice methods to create a list of colors where you pick the number of colors and it optimizes for contrast :)

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin...

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the ...

General Graph Layout : Putting the Parts Together

An essential tool for graph generation is surely the ability to draw graphs. There are, of course, many methods for doing so along with many implementations of them. This post describes one more (or perhaps an existing method - I haven't checked). Firstly, lets divide a graph up into two parts; a) the blocks, also known as ' biconnected components ', and b) trees connecting those blocks. This is illustrated in the following set of examples on 6 vertices: Trees are circled in green, and blocks in red; the vertices in the overlap between two circles are articulation points. Since all trees are planar, a graph need only have planar blocks to be planar overall. The layout then just needs to do a tree layout  on the tree bits and some other layout on the embedding of the blocks. One slight wrinkle is shown by the last example in the image above. There are three parts - two blocks and a tree - just like the one to its left, but sharing a single articulation point. I had...