Skip to main content

Misunderstanding Embeddings, and Whitney Flips

So I should correct something that I posted a while ago about embedding 3-connected graphs. The most obvious examples of this class of graph are polyhedra - tetrahedra, cubes, etc - and maybe it's obvious that there is only one way to embed these in the plane. So in that sense, 'enumerating' the embeddings for these graphs is quite easy ... there's just one to count.

Of course, this embedding can be drawn with any of its cycles as an outer face; this is what gave rise to the different looking drawings. I guess the way to think about it is that the embedding is on the surface of a sphere - where there is no 'privileged' face to call the outer face - and that the drawing on the plane just picks one of the faces to 'squash flat' as I put it back in (wow) 2011.



Anyway - on to Whitney flips! There are a class of graphs that can be embedded in the plane in different ways (that is, the combinatorial map is different for the same outer face). These are subject to a Whitney flip, named after the mathematician who laid the foundation for matroids among other things. As an example see the image above.

The only graphs that have this flip are ones with a 2-vertex cutset - the top and bottom vertices in the image. Of course, finding these is a whole other problem, which I may or may not get around to describing...


Comments

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin...

1,2-dichlorocyclopropane and a spiran

As I am reading a book called "Symmetry in Chemistry" (H. H. Jaffé and M. Orchin) I thought I would try out a couple of examples that they use. One is 1,2-dichlorocylopropane : which is, apparently, dissymmetric because it has a symmetry element (a C2 axis) but is optically active. Incidentally, wedges can look horrible in small structures - this is why: The box around the hydrogen is shaded in grey, to show the effect of overlap. A possible fix might be to shorten the wedge, but sadly this would require working out the bounds of the text when calculating the wedge, which has to be done at render time. Oh well. Another interesting example is this 'spiran', which I can't find on ChEBI or ChemSpider: Image again courtesy of JChempaint . I guess the problem marker (the red line) on the N suggests that it is not a real compound? In any case, some simple code to determine potential chiral centres (using signatures) finds 2 in the cyclopropane structure, and 4 in the ...

General Graph Layout : Putting the Parts Together

An essential tool for graph generation is surely the ability to draw graphs. There are, of course, many methods for doing so along with many implementations of them. This post describes one more (or perhaps an existing method - I haven't checked). Firstly, lets divide a graph up into two parts; a) the blocks, also known as ' biconnected components ', and b) trees connecting those blocks. This is illustrated in the following set of examples on 6 vertices: Trees are circled in green, and blocks in red; the vertices in the overlap between two circles are articulation points. Since all trees are planar, a graph need only have planar blocks to be planar overall. The layout then just needs to do a tree layout  on the tree bits and some other layout on the embedding of the blocks. One slight wrinkle is shown by the last example in the image above. There are three parts - two blocks and a tree - just like the one to its left, but sharing a single articulation point. I had...