Skip to main content

Faulon's Signatures : A Possible Interpretation

Several recent papers by Faulon concern an idea he calls 'signatures'. This post is just a record of what I understood them to be.

Firstly, a signature is a subgraph of a molecular graph. There is a distinction between atomic signatures - which is a tree rooted at a particular atom - and a molecular signature, which is the set of atomic signatures for each atom in a molecule.

A tree is a graph with no cycles, so an atomic signature is not just a subgraph. Like a path, a signature has a length - or rather a height. Here is a picture of signatures of heights 1-4 for a fused ring structure:


The graph G on the left has one of its atoms labelled (a), and each of the trees in the center is a signature rooted at that atom. On the right, is the simple string form of the tree, as a nested list. I should point out that the signatures in these images may not be canonical, as I worked them out by hand (as I have not yet fully implemented the canonization algorithm).

Signatures of the same height may be different for the atoms in a molecule. At a height of zero, it is simply the atoms. A signature of height one is each atom, plus its neighbours. For G, above, there are two distinct height-1 signatures. For greater heights in G, there are more:


These are three subgraphs (SG) of G, rooted at three different atoms (a, b, c). Each one corresponds to a signature tree, which also correspond to different signature strings (not shown). The trees have been given square nodes, instead of circular ones, just to make them look different. From the symmetry of G, it may be clear that the other atoms also have one of these same height-2 signatures.

Finally, there are some odd properties of the trees created from the subgraphs, that become noticable in height-3 signatures of G. As mentioned above, a tree cannot have cycles, so when the paths radiating out from the root atom meet on the same atom, it will appear in the tree twice. Further, when paths cross the same bond - at the same time - both atoms in the bond will appear in both orders across two layers:


The subgraph SG shows the former case, by putting two new atoms corresponding to the duplicate visit to the bridging atom in G. For the subgraph SH of the pentagon H the whole of the last bond visited is duplicated, and the signature tree has a pair of duplicate bonds at the leaves. The tree construction process forbids duplication of bonds except in these two ways.

Comments

Popular posts from this blog

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

Signatures with user-defined edge colors

A bug in the CDK implementation of my signature library turned out to be due to the fact that the bond colors were hard coded to just recognise the labels {"-", "=", "#" }. The relevant code section even had an XXX above it!

Poor show, but it's finally fixed now. So that means I can handle user-defined edge colors/labels - consider the complete graph (K5) below:

So the red/blue colors here are simply those of a chessboard imposed on top of the adjacency matrix - shown here on the right. You might expect there to be at least two vertex signature classes here : {0, 2, 4} and {1, 3} where the first class has vertices with two blue and two red edges, and the second has three blue and two red.

Indeed, here's what happens for K4 to K7:

Clearly even-numbered complete graphs have just one vertex class, while odd-numbered ones have two (at least?). There is a similar situation for complete bipartite graphs:

Although I haven't explored any more of these…