Skip to main content

Signature bond compatibility

So, given my previous posts on what Faulon's signatures are, here is an explanation of how they are used in the structure enumeration algorithm that I am almost finished implementing.

The core test in this algorithm is for compatible bonds. Two atoms are only joined if : a) they have compatible target signatures and b) there are less than the target number of bonds already. A target signature here is just a signature that is set on the atom for it to match, like a pattern.

The first of these tests is illustrated here:

Another (overly) complex diagram! But the formula here is a bit difficult to interpret otherwise. In the top left corner is a graph G (slightly resembling hexane without the hydrogens) which is, by convention, composed of vertices (V) and edges (E).

The equation to the right of the graph defines part of the condition for a compatible bond. The tau terms are just target signatures, as shown on the upper right. The tricky term is h-1στ(y)(z) which means 'a signature starting from the neighbour z of y in the subgraph defined by τ(y)'. This requires using a target signature (τ(y)) as if it was a subgraph - shown on the bottom left for the target b and the neighbour n.

The same process is repeated on the bottom right of the figure for b and m - which matches the height - 1 target signature for c. This should make sense, since the atoms labelled with b in the graph are attached to both a and c - so the signature for b must be compatible with both. It is easy to check that a and c are not compatible, and cannot therefore be bonded.

Comments

Popular posts from this blog

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

Signatures with user-defined edge colors

A bug in the CDK implementation of my signature library turned out to be due to the fact that the bond colors were hard coded to just recognise the labels {"-", "=", "#" }. The relevant code section even had an XXX above it!

Poor show, but it's finally fixed now. So that means I can handle user-defined edge colors/labels - consider the complete graph (K5) below:

So the red/blue colors here are simply those of a chessboard imposed on top of the adjacency matrix - shown here on the right. You might expect there to be at least two vertex signature classes here : {0, 2, 4} and {1, 3} where the first class has vertices with two blue and two red edges, and the second has three blue and two red.

Indeed, here's what happens for K4 to K7:

Clearly even-numbered complete graphs have just one vertex class, while odd-numbered ones have two (at least?). There is a similar situation for complete bipartite graphs:

Although I haven't explored any more of these…