Skip to main content

Two pass rendering

So, there was a question on the cdk-devel mailing list about bounding boxes, reactions, and text. An unfortunate consequence of the new design is that the renderer will not calculate bounding boxes that can fully contain the text. Concretely, this is what it would look like (not made in JCP!)

The blue box is the bounds that would be created, which is minimal with respect to the atom centers. The black box is the bounds that should be created, if we respected the text size. The problem is, the size of text is not known until the point it is drawn. Or, more precisely, until we have some sort of GraphicsContext to ask about the width in a particular font.

So, a two-pass system was suggested. When this was mentioned before, I was dismissive - perhaps even rude. Sorry about that Egon, Sam. I still think it is better avoided; in the case of transparency, I don't know why alpha values can't be used for fill colours. I understand there was some SWT problems..?

Anyway, here is a sketch of a possible two-pass system, that would allow some of these adjustments to be made:

That's unreadably small in thumbnail - click for bigger, as usual. The basic idea would be to have one element tree with model-space values, and one with screen space values. I've made the distinction between double and integer, but Java2D will draw with doubles, so that is not important.


Rude? You mean with your comment in that bug report? Subset: "Bugs are features which are broken, not features that work correctly, but in a way that is not desirable."

I fully agree with that statement!

Can you please repeat the rudeness, so that I understand what to be upset about? ;)
gilleain said…
Well, Sam was helpfully making a bug report, and I was complaining about it, that's all.

Also, I dismissed a two-pass sytem without discussion, so that's what you can get annoyed about, if you like :)

In general with the rendering, I focus too much on speed at the expense of flexibility. I guess that small molecules need multiple precise representations more than they need ultra-fast drawing.
I was not offended. Indeed, there are plenty of reasons to dislike a two-pass system, and Arvid and I have been discussing it on several occasions. We, at least, have not come up with a different approach to getting things like this right.

At this moment, I am not sure what the bottleneck of drawing speed is... maybe Arvid and I can find some time next week to run YourKit (tm) against jchempaint-primary...
gilleain said…
Well, whatever is done it has to achieve something like the following:

1) given a chem-model, generate the intermediate representation.
2) run through the element tree, either making a new scaled tree (as in the diagram) or calculating some properties, like a bounding box.
3) draw the tree, possibly after changing the scale.

in concrete terms, if a correct bounding box is to be made, the width on screen needs to be calculated, then the scale adjusted to compensate.

The double-tree approach is clean, but memory inefficient. Just calculating some properties (eg width, height) would be better, but less extensible.

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:

Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:

One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:

Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.

The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Trees

Tree generation is a well known (and solved!) problem in computer science. On the other hand, it's pretty important for various problems - in my case, making tree-like fusanes. I'll describe here the slightly tortuous route I took to make trees.

Firstly, there is a famous theorem due to Cayley that the number of (labelled) trees on n vertices is nn - 2 which can be proved by using Prüfer sequences. That's all very well, you might well say - but what does all this mean?

Well, it's not all that important, since there is a fundamental problem with this approach : the difference between a labelled tree and an unlabelled tree. There are many more labeled trees than unlabeled :

There is only one unlabeled tree on 3 vertices, but 3 labeled ones
this is easy to check using the two OEIS sequences for this : A000272 (labeled) and A000055 (unlabeled). For n ranging from 3 to 8 we have [3, 16, 125, 1296, 16807, 262144] labeled trees and [1, 2, 3, 6, 11, 23] unlabeled ones. Only 23 …