Skip to main content

Why modular decomposition is not very useful for chemical graphs

It is difficult to publish negative results in a journal, but a blog post seems like a good place to record the experience. Especially situations like this, where it probably should have been obvious not to try in the first place...

So; what is modular decomposition? Briefly, a module is a little like a connected component in a graph - indeed, a connected component is made up from one or more modules, but modules can overlap. Decomposition of a graph into its modules is, therefore, like finding the connected components of the graph. An example is shown here:


Two modules in the graph are circled, there may be others. The definition is a set of vertices that have the same neighbours outside the set. So, there was no need for me to make them complete graphs, but it looked nicer. Anyway, already looking at this example it is clear that these are not very 'chemical' graphs. They look more like networks (for example, see : [1]).

Indeed, I tried out some code made by the authors of a paper on a linear-time algorithm for modular decomposition [2] that was in java (makes a change from c). It was also nicely commented, unlike the mathematician - whose name I won't mention - that said he doesn't comment or document his code because "no program has ever improved through comments" which is just a lazy excuse, frankly.

The results for the molecules in the CDK MoleculeFactory were that almost all of them are prime modules; which means that they are elementary, or unbreakdownable. Notable exceptions are cyclobutane and a propellane-like graph (see image, modules are circled).


In fact, I suspect that chemical graphs with non-prime modular decomposition trees are rare. Partly because most graphs are irregular, but mainly due to the low degree (valence) of atomic vertices. Anyway, modules are not a solution to structure diagram layout [3].

[1] : J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari. Modular decomposition of protein-protein interaction networks. Genome Biology 5:R57 (2004). doi:10.1186/gb-2004-5-8-r57
[2] : Marc Tedder, Derek Corneil, Michel Habib, Christophe Paul Simple. Simpler linear-time modular decomposition via recursive factorizing permutations. DOI:10.1007/978-3-540-70575-8_52
[3] Drawing Graphs Using Modular Decomposition DOI: 10.1007/11618058_31

Comments

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …