Skip to main content

Why modular decomposition is not very useful for chemical graphs

It is difficult to publish negative results in a journal, but a blog post seems like a good place to record the experience. Especially situations like this, where it probably should have been obvious not to try in the first place...

So; what is modular decomposition? Briefly, a module is a little like a connected component in a graph - indeed, a connected component is made up from one or more modules, but modules can overlap. Decomposition of a graph into its modules is, therefore, like finding the connected components of the graph. An example is shown here:


Two modules in the graph are circled, there may be others. The definition is a set of vertices that have the same neighbours outside the set. So, there was no need for me to make them complete graphs, but it looked nicer. Anyway, already looking at this example it is clear that these are not very 'chemical' graphs. They look more like networks (for example, see : [1]).

Indeed, I tried out some code made by the authors of a paper on a linear-time algorithm for modular decomposition [2] that was in java (makes a change from c). It was also nicely commented, unlike the mathematician - whose name I won't mention - that said he doesn't comment or document his code because "no program has ever improved through comments" which is just a lazy excuse, frankly.

The results for the molecules in the CDK MoleculeFactory were that almost all of them are prime modules; which means that they are elementary, or unbreakdownable. Notable exceptions are cyclobutane and a propellane-like graph (see image, modules are circled).


In fact, I suspect that chemical graphs with non-prime modular decomposition trees are rare. Partly because most graphs are irregular, but mainly due to the low degree (valence) of atomic vertices. Anyway, modules are not a solution to structure diagram layout [3].

[1] : J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari. Modular decomposition of protein-protein interaction networks. Genome Biology 5:R57 (2004). doi:10.1186/gb-2004-5-8-r57
[2] : Marc Tedder, Derek Corneil, Michel Habib, Christophe Paul Simple. Simpler linear-time modular decomposition via recursive factorizing permutations. DOI:10.1007/978-3-540-70575-8_52
[3] Drawing Graphs Using Modular Decomposition DOI: 10.1007/11618058_31

Comments

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:



Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.



The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Trees

Tree generation is a well known (and solved!) problem in computer science. On the other hand, it's pretty important for various problems - in my case, making tree-like fusanes. I'll describe here the slightly tortuous route I took to make trees.

Firstly, there is a famous theorem due to Cayley that the number of (labelled) trees on n vertices is nn - 2 which can be proved by using Prüfer sequences. That's all very well, you might well say - but what does all this mean?

Well, it's not all that important, since there is a fundamental problem with this approach : the difference between a labelled tree and an unlabelled tree. There are many more labeled trees than unlabeled :


There is only one unlabeled tree on 3 vertices, but 3 labeled ones
this is easy to check using the two OEIS sequences for this : A000272 (labeled) and A000055 (unlabeled). For n ranging from 3 to 8 we have [3, 16, 125, 1296, 16807, 262144] labeled trees and [1, 2, 3, 6, 11, 23] unlabeled ones. Only 23 …