The simplest-yet-most-complex example I could find is this one from another previous post (I like to recycle :)
I should mention again that I don't know if this is an actual chemical. I call it 'bowtieane', but maybe it has a proper name. In any case, it makes a nice small test case. The ring equivalence classes shown (A, B, C) are defined by the signatures as usual.
I should mention again that I don't know if this is an actual chemical. I call it 'bowtieane', but maybe it has a proper name. In any case, it makes a nice small test case. The ring equivalence classes shown (A, B, C) are defined by the signatures as usual.
What's really strange though is SSSRFinder's partition of the rings. It divides the two A-rings into separate classes. This seems like the opposite behaviour to the fullerene-26 case where there were fewer equivalence classes than for the signature method. I really, really should read the papers referenced in the code.
Comments