Skip to main content

Alternative JCP architecture

Soooo. I have been messing around with what I've optimistically been thinking of as an 'alternative' JChemPaint renderer rather than just a botched refactoring. I started with the code by Niels Out (blog) and messed around with it a bit. Here is a diagram of part of where it is at:


This is meant to be valid UML, but the message is the same : "Overly. Complex." The basic idea is that the parent SymbolTreeFactory handles the logic of what bonds to create, and the child factory creates a tree suitable for AWT.

There's a name problem here, as "AWT" is not right for Java2D; also I'm not sure why I decided on "SymbolTree" as it's not really a tree as such. It could be, using a Composition pattern perhaps, but that seems unnecessary.

Anyway, the point of this is to make separate AWT and SWT renderers, while sharing as much code as possible. This may not be the way to do it, but it is a way to do it.

Comments

Arvid implemented this basic design yesterday...
gilleain said…
Oh, I should have said, this diagram was made from the implementation, not the other way round!

So, I have a version. There are still problems with the design; mainly due to having to render text (font sizes are always the problem).

Not sure where to put the code...

Popular posts from this blog

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…