Skip to main content

CDK, JCP, SWT, AWT...

And other TLAs (three-letter acronyms)...

So, in trying to find out what the status of the JChemPaint code, there seems to be a lot of stuff, but not all of it works. So, in order to understand the plan, and as a suggested architecture, have this diagram:

It's not proper UML, but the package symbols are right. What this sketch suggests is that if there is graphics-independant code in the cdk.renderer package, then this package would take a molecule (or a reaction set, or a chemobject, etc) and 'render' it into graphical objects.

These would then be passed (the "renderer objects" oval) to the package (n.b.cdk.jchempaint or o.o.jchempaint) that is actually using a Graphics or GC object to draw with. Otherwise, the renderer package is really doing nothing useful.

Comments

One thing to consider is that the input for the Renderer is not just IMolecule, but also things like IReaction.

In relation to this, we likely need rendering modules, which one can easily plugin in and out... for example, a module to draw reaction boxes, and electron movement arrows...

Now, a tree or list of rendering objects is a good idea, but we need to come up with a design which integrates well with such a modular design too...
gilleain said…
I saw the IRenderer2D interface methods (paintMoleculeSet, paintReactionSet, etc).

I suppose it might be nice to have these as modules, but I can't see the use-case for it. It seems like YAGNI applies:

http://en.wikipedia.org/wiki/You_Ain%27t_Gonna_Need_It

But, I could be wrong...

In principle, there is no problem making the intermediate representation in a modular fashion, but at the moment the test implementation only renders bonds, rings, and atom symbols so there's a way to go :)
The alternative is to add many options to the Renderer2DModel, such as: drawReactionBoxes, drawElectronMovements, etc...

We do need this one way or another...

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:



Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.



The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Trees

Tree generation is a well known (and solved!) problem in computer science. On the other hand, it's pretty important for various problems - in my case, making tree-like fusanes. I'll describe here the slightly tortuous route I took to make trees.

Firstly, there is a famous theorem due to Cayley that the number of (labelled) trees on n vertices is nn - 2 which can be proved by using Prüfer sequences. That's all very well, you might well say - but what does all this mean?

Well, it's not all that important, since there is a fundamental problem with this approach : the difference between a labelled tree and an unlabelled tree. There are many more labeled trees than unlabeled :


There is only one unlabeled tree on 3 vertices, but 3 labeled ones
this is easy to check using the two OEIS sequences for this : A000272 (labeled) and A000055 (unlabeled). For n ranging from 3 to 8 we have [3, 16, 125, 1296, 16807, 262144] labeled trees and [1, 2, 3, 6, 11, 23] unlabeled ones. Only 23 …